
J .  CHEM. S O C . ,  CHEM.  COMMUN., T993 1457 

A Formal Synthesis of (+)-Compactin 
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Compound 9, a key intermediate in the synthesis of (&)-compactin, has been prepared from the Diels-Alder adduct of 1 
and pbenzoquinone in seven steps. 

The compactin-mevinolin family,' owing to their potent 
hypocholesterolaemic activity,2 have attracted much atten- 
tion; many strategies of synthesis have been developed.3 
Numerous approaches were based on the construction of the 
hydronaphthalene and lactone portions that were coupled at a 

late stage. We report here the synthesis of 9, which has been 
reported to be transformed into (+)-compactin.4 

The synthetic sequence is shown in Scheme 1. Compound 2, 
prepared from the Diels-Alder reaction of 15  and p-benzo- 
quinone, was transformed into 3 by Luche's reduction. 
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Catalytic hydrogenation of 3 afforded a mixture of 5 and 4 in 
60 and 31% yields respectively; the latter was effectively 
transformed into 5 by reduction with N a B b .  The endo 
stereochemistry in 2, which was expected to be the major 

TMSO' I oms 
1 3 

iii 

4 5 5a 

PMEM 

OH 
6 

vii 

OMEM 

0 /  

OH OH 
7 8 9 

1 : 10 

Scheme 1 Reagents and conditions: i, p-benzoquinone, PhH, 90 "C, 
(95%); ii, CeC13-7H20, NaBH4, 0 "C, (68%); iii, RdC H2 (92%); iv, 
AcCl, pyridine; v, MEMC1, Pr2'NEt, (85%); vi, 1 mol dm-3 HCI, 
(98%); vii, m-chloroperbenzoic acid, (82%); viii, p-TsOH (cat.), 
MeOH, CH(OMe)3, 90 "C, (57%) (TMS = trimethylsilyl) 
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Scheme 2 

isomer from theoretical point of view, was mainly deduced 
from the formation of ketal in 3 after Luche's reduction; this 
result would not be possible for the ex0 adduct. This result also 
determined the stereochemistry of C-8 (as indicated in 5a) in 
3-8. The assignments of the stereochemistry of the hydroxy 
group in 5 and the corresponding functional groups in 5a-8 
were based on the lH NMR spectral pattern of the hydrogen 
atom on C-11 in 5a, a pattern of ddd (J 12.1,7.0,4.7 Hz); the 
large coupling constant 12.1 Hz is due to the coupling between 
two vicinal diaxial proton indicating that the hydrogen on C-11 
is in the axial position. The stereochemistry of the hydroxy 
group in 3 is expected to be the same as that in 5.  Treatment of 
5 with methoxyethoxymethyl chloride (MEMCl) in the 
presence of ethyldiisopropylamine followed by acidic hydroly- 
sis of the ketal moiety yielded 6. Baeyer-Villiger oxidation of 
6 produced a mixture of 7 and 8 in the ratio 1 : 10 determined 
from the integration of the 1H NMR spectrum [6 4.39 (J 12.2, 
3.3 Hz) and 6 4.53 (J 12.2,3.3 Hz) for the two protons on C-6 
in 7; 6 4.12 (J 3.1 Hz) for the proton on C-4 in 81. Treatment of 
the mixture of 7 and 8 with toluene-p-sulfonic acid (p-TsOH) 
and trimethyl orthoformate in methanol generated 9 in 57% 
yield after column chromatography. The formation of 9 from 8 
is presumably via the reaction pathway depicted in Scheme 2. 
Opening of the lactone ring by transesterication furnished 10 
which equilibrated with its keto form 11. Consecutive elimina- 
tion of H20 and MEMOH from 11 yielded the desired product 
9t that was converted to (+)-compactin by Girotra and 
Wendler .4 
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t. Pertinent spectral data of 9: IR vlcm-I (CHCI3) 3447, 2927, 1728, 

9.7 Hz, 1 H), 6.22 (t, J2.4 Hz, 1 H), 5.88 (d, J9.7 Hz, 1 H), 4.03 (t, J 
2.2 Hz, 1 H), 3.70 (s, 3 H), 3.01 (ddd, J 13.5, 6.4, 3.9 Hz, 1 H), 2.60 
(dd, J 13.5.2.2 Hz, 1 H), 2.46-2.56 (m, 1 H), 2.43 (dd, J 17.8,6.4 Hz, 
1 H), 2.25 (m, 1 H), 2.06 (m, 1 H), 1.63 (m, 1 H); I3C NMR (100 MHz, 

1663, 1437, 1209, 1092, 859; 'H NMR (400 MHz, CDC13) 6 6.96 (d, J 

CDC13) 6 198.45 (C), 175.11 (C), 147.62 (CH), 136.15 (CH), 131.67 
(C), 124.46 (CH), 64.28 (CH), 52.22 (CH3), 44.16 (CH), 43.06 (CH), 

2%). 218 (100%0), 186 (76%), 160 (98%), 158 (76%). 145 (76%). 132 
31.06 (CH2), 27.41 (CH2), 21.33 (CH2); MS (75 eV) mlt 236 (M+, 

(68%); HRMS (EI) Calc. for C13H1604 236.1049, found 236.1054. 


